The duplicated B-class MADS-box genes display dualistic characters in orchid floral organ identity and growth.

نویسندگان

  • Zhao-Jun Pan
  • Chih-Chin Cheng
  • Wen-Chieh Tsai
  • Mei-Chu Chung
  • Wen-Huei Chen
  • Jer-Ming Hu
  • Hong-Hwa Chen
چکیده

Orchidaceae are an excellent model to examine perianth development because of their sophisticated floral architecture. In this study, we identified 24 APETALA3 (AP3)-like and 13 PISTILLA (PI)-like genes from 11 species of orchids and characterized them into four AP3- and two PI-duplicated homologs. The first duplication event in AP3 homologs occurring in the early evolutionary history of the Orchidaceae gave rise to AP3A and AP3B clades. Further duplication events resulted in four subclades, namely AP3A1, AP3A2, AP3B1 and AP3B2, during the evolution of Orchidaceae. The AP3 paralogous genes were expressed throughout inflorescence and floral bud development. From the in situ hybridization results, we noticed that the transition timings from ubiquitous to constrained expression in floral organs for both clades are different. The transition point of expression of the AP3A clade (clades 3 and 4) was at the late floral organ primordia stage. In contrast, that for the AP3B clade (clades 1 and 2) was not observed until the late inflorescence and floral bud stages. In addition, the AP3 orthologous genes revealed diverse expression patterns in various species of orchids, whereas the PI homologs were uniformly expressed in all floral whorls. AP3A2 orthologs play a noticeable role in lip formation because of their exclusive expression in the lip. Further evidence comes from the ectopic expression of AP3A2 detected in the lip-like petals extending from the lip in four sets of peloric mutants. Finally, a Homeotic Orchid Tepal (HOT) model is proposed, in which dualistic characters of duplicated B-class MADS-box genes are involved in orchid perianth development and growth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flower development of Phalaenopsis orchid involves functionally divergent SEPALLATA-like genes

The Phalaenopsis orchid produces complex flowers that are commercially valuable, which has promoted the study of its flower development. E-class MADS-box genes, SEPALLATA (SEP), combined with B-, C- and D-class MADS-box genes, are involved in various aspects of plant development, such as floral meristem determination, organ identity, fruit maturation, seed formation and plant architecture. Four...

متن کامل

Interactions of B-class complex proteins involved in tepal development in Phalaenopsis orchid.

In our previous studies, we identified four DEFICIENS (DEF)-like genes and one GLOBOSA (GLO)-like gene involved in floral organ development in Phalaenopsis equestris. Revealing the DNA binding properties and protein-protein interactions of these floral homeotic MADS-box protein complexes (PeMADS) in orchids is crucial for the elucidation of the unique orchid floral morphogenesis. In this study,...

متن کامل

A Modified ABCDE Model of Flowering in Orchids Based on Gene Expression Profiling Studies of the Moth Orchid Phalaenopsis aphrodite

Previously we developed genomic resources for orchids, including transcriptomic analyses using next-generation sequencing techniques and construction of a web-based orchid genomic database. Here, we report a modified molecular model of flower development in the Orchidaceae based on functional analysis of gene expression profiles in Phalaenopsis aphrodite (a moth orchid) that revealed novel role...

متن کامل

Identification and characterization of three orchid MADS-box genes of the AP1/AGL9 subfamily during floral transition.

Gene expressions associated with in vitro floral transition in an orchid hybrid (Dendrobium grex Madame Thong-In) were investigated by differential display. One clone, orchid transitional growth related gene 7 (otg7), encoding a new MADS-box gene, was identified to be specifically expressed in the transitional shoot apical meristem (TSAM). Using this clone as a probe, three orchid MADS-box gene...

متن کامل

Molecular Cloning and Analysis of Two Flowering Related Genes from Apple (Malus × domestica)

Apple (Malus×domestica Borkh.) is the fourth fruit in importance and Iran ranks fifth in apple production in the world. Longevity of juvenility in apple extends breeding cycles and makes its breeding a tough job. To alleviate this barrier via genetic engineering, the genes involved in flowering and floral development of apple and their function must be identified and characterized. Most of thes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant & cell physiology

دوره 52 9  شماره 

صفحات  -

تاریخ انتشار 2011